Admission control in time-slotted multihop mobile networks

  • Authors:
  • C. R. Lin

  • Affiliations:
  • Dept. of Comput. Sci. & Eng., Nat. Sun Yat-Sen Univ., Kaohsiung

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

The emergence of nomadic applications have generated a lot of interest in next-generation wireless network infrastructures which provide differentiated service classes. So it is important to study how the quality of service (QoS), such as packet loss and bandwidth, should be guaranteed. To accomplish this, we develop am admission control scheme which can guarantee bandwidth for real-time applications in multihop mobile networks. In our scheme, a host need not discover and maintain any information of the network resources status on the routes to another host until a connection request is generated for the communication between the two hosts, unless the former host is offering its services as an intermediate forwarding station to maintain connectivity between two other hosts. This bandwidth guarantee feature is important for a mobile network to interconnect wired networks with QoS support. Our connection admission control scheme can also work in a stand-alone mobile ad hoc network for real-time applications. This control scheme contains end-to-end bandwidth calculation and bandwidth allocation. Under such a scheme, the source is informed of the bandwidth and QoS available to any destination in the mobile network. This knowledge enables the establishment of QoS connections within the mobile network and the efficient support of real time applications. In the case of ATM interconnection, the bandwidth information can be used to carry out an intelligent handoff between ATM gateways and/or to extend the ATM virtual circuit service to the mobile network with possible renegotiation of QoS parameters at the gateway. We examine via simulation the system performance in various QoS traffic flows and mobility environments