On-line integrated routing in dynamic multifiber IP/WDM networks

  • Authors:
  • Tong Ye;Qingji Zeng;Yikai Su;Lufeng Leng;Wei Wei;Zhizhong Zhang;Wei Guo;Yaohui Jin

  • Affiliations:
  • Center of Broadband Opt. Networking Technol., Shanghai Jiao Tong Univ., China;-;-;-;-;-;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

This paper focuses on dynamic integrated routing in multifiber Internet protocol/wavelength-division multiplexing (IP/WDM) networks, which can be implemented through either one-step routing (OSR) or two-step routing (TSR) approach. Based on an extended layered-graph, two resource assignment strategies, termed channel-level balance (CLB) and link-level balance (LLB), are proposed to balance the traffic in the network at different levels. To further improve the performance, a parameter K is introduced to make a dynamic tradeoff between the logical-layer links and the optical-layer links. Simulation studies are carried out for various topologies. The results show that LLB is better than CLB in most cases, and LLB combined with OSR has the optimal performance. Also, we find that the routing approach and the resource assignment strategy individually play different roles with different values of rl that is introduced to indicate the resource richness of the network. As a multifiber network is functionally equivalent to a single-fiber network with limited wavelength conversion, we investigate the effects of wavelength conversion by studying the multifiber IP/WDM networks. The analysis shows that, when the granularity of each connection request is much smaller than the wavelength granularity, wavelength conversion may increase the request blocking probability in the network.