Packet access using DS-CDMA with frequency-domain equalization

  • Authors:
  • D. Garg;F. Adachi

  • Affiliations:
  • Dept. of Electr. & Commun. Eng., Tohoku Univ., Japan;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

The next-generation mobile communications system is anticipated to support very high-speed data rates exceeding several tens megabits per second. In this paper, we consider high-speed downlink packet access for direct-sequence code-division multiple access (DS-CDMA) as in third-generation wideband code-division multiple-access systems. Adaptive modulation and coding (AMC), multicode operation and hybrid automatic repeat request (HARQ) will be the enabling technologies. With such high-speed data transmissions, however, multicode operation severely suffers from the loss of orthogonality among the spreading codes since the wireless channel becomes severely frequency-selective. In this paper, we apply frequency-domain equalization (FDE) based on minimum mean-square error (MMSE) criterion instead of conventional rake combining for receiving the packet. A new MMSE-FDE weight is derived for packet combining. The throughput in a frequency-selective Rayleigh-fading channel is evaluated by computer simulation for Chase combining and incremental redundancy (IR) packet combining. It is shown that the use of MMSE-FDE for the reception of multicode DS-CDMA packet gives an improved throughput irrespective of the channel's frequency-selectivity.