Bidirectional iterative ISI canceller for high-rate DSSS/CCK communications

  • Authors:
  • Byoung-Hoon Kim

  • Affiliations:
  • Qualcomm Inc., San Diego, CA, USA

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

This paper proposes a new RAKE receiver incorporated with a bidirectional iterative intersymbol interference (ISI) canceller in order to reinforce multipath robustness of high-rate direct-sequence spread-spectrum complementary code keying (DSSS/CCK) systems. The proposed RAKE receiver first combines multipath signal components through a channel matched filter (CMF) and removes postcursor-ISI by employing a codeword decision feedback equalizer (DFE). Then, a CCK codeword detector tentatively determines the current CCK codeword symbol and reuses it to subtract precursor-ISI from the previous symbol. Therefore, the ultimate symbol decision is made using the delayed signal with both postcursor-ISI and precursor-ISI cancelled. The detection performance can be more improved through an iterative refinement processing between the postcursor and the precursor components. Simulation results exhibit a significantly improved error rate performance of the proposed receiver compared with that of the legacy RAKE receiver employing only a postcursor DFE. The additional cost for realization of the proposed receiver is one symbol decision delay and reuse complexity of the DFE and the codeword detector.