Adaptive spread-spectrum multicarrier multiple-access over wirelines

  • Authors:
  • M. Crussiere;J. -Y. Baudais;J. -F. Helard

  • Affiliations:
  • Inst. of Electron. & Telecommun. of Rennes, France;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

In this paper, we investigate the dynamic resource allocation adapted to spread-spectrum multicarrier multiple-access (SS-MC-MA) systems in a multiuser power line communication (PLC) context. The developed adaptive system is valid for uplink, downlink, as well as for indoor and outdoor communications. The studied SS-MC-MA system is based on classical multicarrier modulation like digital multitone (DMT), combined with a spread-spectrum (SS) component used to multiplex several information symbols of a given user over the same subcarriers. The multiple-access task is carried out using a frequency-division multiple-access (FDMA) approach so that each user is assigned one or more subcarrier sets. The number of subcarriers in each set is given by the spreading code length as in classical SS-MC-MA systems usually studied in the wireless context. We derive herein a new loading algorithm that dynamically handles the system configuration in order to maximize the data throughput. The algorithm consists in an adaptive subcarrier, code, bit, and energy assignment algorithm. Power-spectral density constraint due to spectral mask specifications is considered, as well as finite-order modulations. In that case, it is shown that SS-MC-MA combined with the proposed loading algorithm achieves higher throughput than DMT in a multiuser PLC context. Because of the finite granularity of the modulations, some residual energy is indeed wasted on each subcarrier of the DMT spectrum. The combining of a spreading component with DMT allows to merge these amounts of energy so that one or more additional bits can be transmitted in each subcarrier subset leading to significant throughput gain. Simulations have been run over measured PLC channel responses and highlight that the proposed system is all the more interesting than the signal-to-noise ratio is low.