Evolution to a Converged Layer 1, 2 in a Global-Scale, Native Ethernet Over WDM-Based Optical Networking Architecture

  • Authors:
  • A. Hadjiantonis;M. A. Ali;H. Chamas;W. Bjorkman;S. Elby;A. Khalil;G. Ellinas

  • Affiliations:
  • Dept. of Eng., Intercollege;-;-;-;-;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2007

Quantified Score

Hi-index 0.07

Visualization

Abstract

There is an emerging wide interest to transition from legacy WAN transport technologies to Ethernet-based technology. The current round of carrier Ethernet standards will successfully equip service providers (SPs) with the required tools to provide carrier-grade scalability and to provision and engineer connection-oriented point-to-point (P2P) packet trunks across a native Ethernet infrastructure. Building on these standards, this paper demonstrates how to support and implement full traffic engineering in a global-scale, two-tiered native Ethernet-over-WDM optical networking architecture. To achieve these objectives, several networking innovations are presented and developed including: 1) a GMPLS-based unified control plane that offers a tighter integration between layer-1 (optical transport layer) and layer-2 (Ethernet layer), 2) a fully distributed integrated routing and signaling framework for dynamically provisioning Ethernet switched paths (ESPs) at any bandwidth granularity including both full wavelength and finer granularity (sub-lambda) ESPs in an integrated Ethernet-optical networking environment, and 3) a novel notion of an integrated link-state advertisements strategy that is consistent with a fully integrated routing and signaling protocol