Concepts and results for 3D digital terrain-based wave propagation models: an overview

  • Authors:
  • T. Kurner;D. J. Cichon;W. Wiesbeck

  • Affiliations:
  • Inst. fur Hochstfrequenztechnik & Elektronik, Karlsruhe Univ.;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

Mobile communication links are severely influenced by propagation effects. Wave propagation in the VHF/UHF frequency range over natural and man-made terrain is strongly dependent on topography and morphography. Propagation modeling is based on a ray-optical approach. Wave interactions, like diffraction and scattering, over the propagation path are described by the uniform theory of diffraction (UTD) and physical optics (PO). Propagation models for rural and urban areas are presented for 2-D and 3-D ray tracing. Near-range models apply to the corresponding areas in forest and urban sites. The field-strength delay spectrum describes ray contributions with deterministic amplitudes but statistical phases are used to derive time-and frequency-domain channel characteristics. Comparisons between measured and predicted data are presented