Bayesian decision feedback techniques for deconvolution

  • Authors:
  • Gen-Kwo Lee;S. B. Gelfand;M. P. Fitz

  • Affiliations:
  • Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

There has been great interest in reduced complexity suboptimal MAP symbol-by-symbol estimation for digital communications. We propose a new suboptimal estimator suitable for both known and unknown channels. In the known channel case, the MAP estimator is simplified using a form of conditional decision feedback, resulting in a family of Bayesian conditional decision feedback estimators (BCDFEs); in the unknown channel case, recursive channel estimation is combined with the BCDFE. The BCDFEs are indexed by two parameters: a “chip” length and an estimation lag. These algorithms can be used with estimation lags greater than the equivalent channel length and have a complexity exponential in the chip length but only linear in the estimation lags. The BCDFEs are derived from simple assumptions in a model-based setting that takes into account discrete signalling and channel noise. Extensive simulations characterize the performance of the BCDFE and BCDPE for uncoded linear modulations over both known and unknown (nonminimum phase) channels with severe ISI. The results clearly demonstrate the significant advantages of the proposed BCDFE over the BCDFE in achieving a desirable performance/complexity tradeoff. Also, a simple adaptive complexity reduction scheme can be combined with the BCDFE resulting in further substantial reductions in complexity, especially for large constellations. Using this scheme, we demonstrate the feasibility of blind 16QAM demodulation with 10-4 bit error probability at E b/N0≈ 18.5 dB on a channel with a deep spectral null