Image segmentation and selective smoothing by using Mumford-Shah model

  • Authors:
  • Song Gao;T. D. Bui

  • Affiliations:
  • Dept. of Comput. Sci., Concordia Univ., Montreal, Que., Canada;-

  • Venue:
  • IEEE Transactions on Image Processing
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

Recently, Chan and Vese developed an active contour model for image segmentation and smoothing by using piecewise constant and smooth representation of an image. Tsai et al. also independently developed a segmentation and smoothing method similar to the Chan and Vese piecewise smooth approach. These models are active contours based on the Mumford-Shah variational approach and the level-set method. In this paper, we develop a new hierarchical method which has many advantages compared to the Chan and Vese multiphase active contour models. First, unlike previous works, the curve evolution partial differential equations (PDEs) for different level-set functions are decoupled. Each curve evolution PDE is the equation of motion of just one level-set function, and different level-set equations of motion are solved in a hierarchy. This decoupling of the motion equations of the level-set functions speeds up the segmentation process significantly. Second, because of the coupling of the curve evolution equations associated with different level-set functions, the initialization of the level sets in Chan and Vese's method is difficult to handle. In fact, different initial conditions may produce completely different results. The hierarchical method proposed in this paper can avoid the problem due to the choice of initial conditions. Third, in this paper, we use the diffusion equation for denoising. This method, therefore, can deal with very noisy images. In general, our method is fast, flexible, not sensitive to the choice of initial conditions, and produces very good results.