Robust human detection within a highly dynamic aquatic environment in real time

  • Authors:
  • How-Lung Eng;Junxian Wang;A. H.K.S. Wah;Wei-Yun Yau

  • Affiliations:
  • Inst. for Infocomm Res., Singapore;-;-;-

  • Venue:
  • IEEE Transactions on Image Processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

This paper presents a real-time foreground detection method for monitoring swimming activities at an outdoor swimming pool. Robust performance and high accuracy of detecting objects-of-interest are two central issues of concern. Therefore, in this paper, a considerable amount of attention has been placed on the following aspects: 1) to establish a better method of modeling aquatic background, which exhibits dynamic characteristics with random spatial movements, and 2) to establish a method of enhancing the visibility of the foreground by removing specular reflection at nighttime. First, the development of a new background modeling method is reported. In the proposed approach, the background is modeled as a composition of homogeneous blob movements. With an implementation of a spatial searching process, the proposed method shows capability in associating and distinguishing movements caused by the background. Hence, this contributes to better performance in foreground detection. On the issue of enhancing the visibility of the foreground, a decision-based filtering scheme is proposed as a preprocessing step. A defined concept term, fluctuation measure, is defined for classifying each pixel to be one of the predefined types. This has allowed suitable spatial or spatiotemporal filters to be applied accordingly for color the compensation step. All of these developments are evaluated by testing live on a busy Olympic-size outdoor public swimming pool. Both qualitative and quantitative evaluations are reported. This provides a comprehensive study of the system.