Adaptive Directional Lifting-Based Wavelet Transform for Image Coding

  • Authors:
  • Wenpeng Ding;Feng Wu;Xiaolin Wu;Shipeng Li;Houqiang Li

  • Affiliations:
  • Dept. of Comput. Sci., Univ. of Sci. & Technol. of China, Hefei;-;-;-;-

  • Venue:
  • IEEE Transactions on Image Processing
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

We present a novel 2-D wavelet transform scheme of adaptive directional lifting (ADL) in image coding. Instead of alternately applying horizontal and vertical lifting, as in present practice, ADL performs lifting-based prediction in local windows in the direction of high pixel correlation. Hence, it adapts far better to the image orientation features in local windows. The ADL transform is achieved by existing 1-D wavelets and is seamlessly integrated into the global wavelet transform. The predicting and updating signals of ADL can be derived even at the fractional pixel precision level to achieve high directional resolution, while still maintaining perfect reconstruction. To enhance the ADL performance, a rate-distortion optimized directional segmentation scheme is also proposed to form and code a hierarchical image partition adapting to local features. Experimental results show that the proposed ADL-based image coding technique outperforms JPEG 2000 in both PSNR and visual quality, with the improvement up to 2.0 dB on images with rich orientation features