Multidimensional Directional Filter Banks and Surfacelets

  • Authors:
  • Y. M. Lu;M. N. Do

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL;-

  • Venue:
  • IEEE Transactions on Image Processing
  • Year:
  • 2007

Quantified Score

Hi-index 0.08

Visualization

Abstract

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decomposition of 2-D signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. We propose a new family of filter banks, named NDFB, that can achieve the directional decomposition of arbitrary N-dimensional (Nges2) signals with a simple and efficient tree-structured construction. In 3-D, the ideal passbands of the proposed NDFB are rectangular-based pyramids radiating out from the origin at different orientations and tiling the entire frequency space. The proposed NDFB achieves perfect reconstruction via an iterated filter bank with a redundancy factor of N in N-D. The angular resolution of the proposed NDFB can be iteratively refined by invoking more levels of decomposition through a simple expansion rule. By combining the NDFB with a new multiscale pyramid, we propose the surfacelet transform, which can be used to efficiently capture and represent surface-like singularities in multidimensional data