Detection and correction of transmission errors in JPEG images

  • Authors:
  • Yi-Huang Han;Jin-Jang Leou

  • Affiliations:
  • Inst. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ.;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

The detection and correction approach to transmission errors in JPEG images using the sequential discrete cosine transform (DCT)-based mode of operation is proposed. The objective is to eliminate transmission errors in JPEG images. Here a transmission error may be either a single-bit error or a burst error containing N successive error bits. For an entropy-coded JPEG image, a single transmission error in a codeword will not only affect the underlying codeword, but may also affect subsequent codewords. Consequently, a single error in an entropy-coded system may result in a significant degradation. To cope with the synchronization problem, in the proposed approach the restart capability of JPEG images is enabled, i.e., the eight unique restart markers (synchronization codewords) are periodically inserted into the JPEG compressed image bitstream. Transmission errors in a JPEG image are sequentially detected both when the JPEG image is under decoding and after the JPEG image has been decoded. When a transmission error or equivalently a corrupted restart interval is detected, the proposed error correction approach simply performs a sequence of bit inversions and redecoding operations on the corrupted restart interval and selects the “best” feasible redecoding solution by using a proposed cost function for error correction. The proposed approach can recover high-quality JPEG images from the corresponding corrupted JPEG images at bit error rates (BERs) up to approximately 0.4%. This shows the feasibility of the proposed approach