Rate-distortion optimized layered coding with unequal error protection for robust Internet video

  • Authors:
  • M. Gallant;F. Kossentini

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an effective framework for increasing the error-resilience of low bit-rate video communications over an error-prone packet-switched network. Our framework is based on the principle of layered coding with transport prioritization. We introduce a rate-distortion optimized mode-selection algorithm for our prioritized layered framework. This algorithm is based on a joint source/channel-coding approach and trades off source coding efficiency for increased bitstream error-resilience to optimize the video coding mode selection within and across layers. The algorithm considers the channel conditions, as well as the error recovery and concealment capabilities, of the channel codec and source decoder, respectively. Important framework parameters including the packetization scheme, decoder error concealment method, and channel codec error-protection strength are considered. The effects of mismatch between the parameters employed by the encoder and the actual channel conditions are considered. Results are presented for a wide range of packet loss rates in order to illustrate the benefits of the proposed framework