Model Decomposition and Stochastic Fragments

  • Authors:
  • Tatjana Petrov;Arnab Ganguly;Heinz Koeppl

  • Affiliations:
  • Automatic Control Lab, ETH Zurich, Switzerland;Automatic Control Lab, ETH Zurich, Switzerland;Automatic Control Lab, ETH Zurich, Switzerland

  • Venue:
  • Electronic Notes in Theoretical Computer Science (ENTCS)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we discuss a method for decomposition, abstraction and reconstruction of the stochastic semantics of rule-based systems with conserved number of agents. Abstraction is induced by counting fragments instead of the species, which are the standard entities of information in molecular signaling. The rule-set can be decomposed to smaller rule-sets, so that the fragment-based dynamics of the whole rule-set is exactly a composition of species-based dynamics of smaller rule-sets. The reconstruction of the transient species-based dynamics is possible for certain initial distributions. We show that, if all the rules in a rule set are reversible, the reconstruction of the species-based dynamics is always possible at the stationary distribution. We use a case study of colloidal aggregation to demonstrate that the method can reduce the state space exponentially with respect to the standard, species-based description.