Practical optoelectronic neural network realizations based on the fault tolerance of the backpropagation algorithm

  • Authors:
  • T. J. Allen;Keng-Shen Hung;K. M. Curtis;J. W. Orton

  • Affiliations:
  • Dept. of Electr. & Electron. Eng., Nottingham Univ.;-;-;-

  • Venue:
  • IEEE Transactions on Neural Networks
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes how the fault tolerance of the backpropagation algorithm can be used to accommodate the realistic (nonideal) transfer characteristics of the optical communication links used, between neural layers, in optoelectronic neural networks. In particular the authors demonstrate that networks, utilizing MSM (metal-semiconductor-metal) photodiodes (PDs) and either LED (light emitting diode) or MQW (multiple quantum well) laser transmitters within these intraneural links, are capable of performing satisfactorily even in the presence of such nonideal device phenomena as: 60% optical crosstalk, 50% optoelectronic device variation, or a thresholded (Ith=0.5*Imax) laser output characteristic. Subsequent to this, the authors then show how it is possible to use this fault tolerance to simplify the neuron architecture, to the extent that it consists only of MSM PDs a current amplifier, and an MQW laser. The overall neuron transfer function is then a first-order approximation to the original sigmoidal function