Accuracy/Diversity and Ensemble MLP Classifier Design

  • Authors:
  • T. Windeatt

  • Affiliations:
  • CVSSP, Guildford

  • Venue:
  • IEEE Transactions on Neural Networks
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The difficulties of tuning parameters of multilayer perceptrons (MLP) classifiers are well known. In this paper, a measure is described that is capable of predicting the number of classifier training epochs for achieving optimal performance in an ensemble of MLP classifiers. The measure is computed between pairs of patterns on the training data and is based on a spectral representation of a Boolean function. This representation characterizes the mapping from classifier decisions to target label and allows accuracy and diversity to be incorporated within a single measure. Results on many benchmark problems, including the Olivetti Research Laboratory (ORL) face database demonstrate that the measure is well correlated with base-classifier test error, and may be used to predict the optimal number of training epochs. While correlation with ensemble test error is not quite as strong, it is shown in this paper that the measure may be used to predict number of epochs for optimal ensemble performance. Although the technique is only applicable to two-class problems, it is extended here to multiclass through output coding. For the output-coding technique, a random code matrix is shown to give better performance than one-per-class code, even when the base classifier is well-tuned