An efficient distributed algorithm for detection of knots and cycles in a distributed graph

  • Authors:
  • D. Manivannan;M. Singhal

  • Affiliations:
  • Dept. of Comput. Sci., Kentucky Univ., Lexington, KY, USA;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Knot detection in a distributed graph is an important problem and finds applications in deadlock detection in several areas such as store-and-forward networks, distributed simulation, and distributed database systems. This paper presents an efficient distributed algorithm to detect if a node is part of a knot in a distributed graph. The algorithm requires 2e messages and a delay of 2(d+1) message hops to detect if a node in a distributed graph is in a knot (here, e is the number of edges in the reachable part of the distributed graph and d is its diameter). A significant advantage of this algorithm is that it not only detects if a node is involved in a knot, but also finds exactly which nodes are involved in the knot. Moreover, if the node is not involved in a knot, but is only involved in a cycle, then it finds the nodes that are in a cycle with that node. We illustrate the working of the algorithm with examples. The paper ends with a discussion on how the information about the nodes involved in the knot can be used for deadlock resolution and also on the performance of the algorithm.