Computational complexity analysis of multi-objective genetic programming

  • Authors:
  • Frank Neumann

  • Affiliations:
  • The University of Adelaide, Adelaide, Australia

  • Venue:
  • Proceedings of the 14th annual conference on Genetic and evolutionary computation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

The computational complexity analysis of genetic programming (GP) has been started recently in [7] by analyzing simple (1+1) GP algorithms for the problems ORDER and MAJORITY. In this paper, we study how taking the complexity as an additional criteria influences the runtime behavior. We consider generalizations of ORDER and MAJORITY and present a computational complexity analysis of (1+1) GP using multi-criteria fitness functions that take into account the original objective and the complexity of a syntax tree as a secondary measure. Furthermore, we study the expected time until simple multi-objective genetic programming algorithms have computed the Pareto front when taking the complexity of a syntax tree as an equally important objective.