Widely Linear Alamouti Receiver for the Reception of Real-Valued Constellations Corrupted by Interferences—The Alamouti-SAIC/MAIC Concept

  • Authors:
  • P. Chevalier;F. Dupuy

  • Affiliations:
  • CEDRIC Lab., CNAM, Paris, France;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 2011

Quantified Score

Hi-index 35.68

Visualization

Abstract

Orthogonal space-time block codes (STBC), and the Alamouti scheme in particular, are of particular interest in multiple-input multiple-output (MIMO) systems since they achieve full spatial diversity over fading channels and are decoded from linear processing at the receiver. Nevertheless, due to the expensive spectral resource, increasing network capacity requires the development of interference cancellation (IC) techniques allowing several users to share the same spectral resources without impacting the transmission quality. In this context several IC schemes have been developed during this last decade, where each user is equipped with multiple antennas and employs STBC at transmission. However, these IC techniques require multiple antennas at reception, which remains a challenge at the handset level due to cost and size limitations. For this reason, low complexity single antenna interference cancellation (SAIC) techniques, currently operational in GSM handsets, have been developed recently for single antenna users using real-valued modulations or complex filtering of real-valued modulations, by using a widely linear (WL) filtering at reception. Extension to multiple antennas at reception is called multiple antenna interference cancellation (MAIC) technique. The purpose of this paper is to extend the SAIC/MAIC technology to users using both real-valued constellations, such as amplitude shift keying (ASK) constellations, and the Alamouti scheme at transmission. A WL minimum mean square error (MMSE) receiver, completely new for IC purposes in the context of radio communications systems using the Alamouti scheme, is proposed and analyzed. This receiver, which corresponds to the maximum likelihood (ML) receiver for synchronous intranetwork interferences, is able to separate up to 2 N Alamouti users from N antennas at reception, hence SAIC capability for N = 1.