A Dedicated Monitoring Infrastructure for Multicore Processors

  • Authors:
  • Jia Zhao;S. Madduri;R. Vadlamani;W. Burleson;R. Tessier

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA;-;-;-;-

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

On-chip monitoring of environmental information, such as temperature, voltage, and error data, is becoming increasingly important. To address this need, a low-overhead architectural approach to monitor data collection and use in multicore systems is described. A key aspect of our standalone monitoring subsystem is a low-complexity, on-chip network designed to transport monitor data with multiple priority levels. Collected monitor information is evaluated by a dedicated processor. Experimental results using architectural and interconnect simulators show that the new low-overhead subsystem facilitates employment of thermal and delay-aware dynamic voltage and frequency scaling. In contrast to using existing on-chip interconnect resources to communicate monitor data, the new subsystem provides necessary bandwidth for monitor data traffic without impacting application data traffic. Synthesis results show that our dedicated monitoring approach consumes about 0.2% of multicore area and power resources for an 8-core system based on AMD Athlon 64 processor cores.