Positioning and Utilizing Sensors on a 3-D Terrain Part II—Solving With a Hybrid Evolutionary Algorithm

  • Authors:
  • H. R. Topcuoglu;M. Ermis;M. Sifyan

  • Affiliations:
  • Comput. Eng. Dept., Marmara Univ., Istanbul, Turkey;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we explore using a hybrid evolutionary algorithm (HEA) for deploying and configuring a set of given sensors on a synthetically generated 3-D terrain. In our evolutionary-algorithm (EA) based solution, various methods are considered in order to incorporate specialized operators for hybridization, including problem-specific heuristics for initial population generation, intelligent variation operators (contribution-based-crossover operator and proximity-based-crossover operator), which comprise problem-specific knowledge, and a local-search phase. The experimental study validates finding the optimal balance among visibility-oriented, stealth-oriented, and cost-oriented objectives. The obtained results also indicate the effectiveness and robustness of our HEA-based solution for various practical scenarios with different objectives.