An Algorithm for License Plate Recognition Applied to Intelligent Transportation System

  • Authors:
  • Ying Wen; Yue Lu; Jingqi Yan; Zhenyu Zhou;K. M. von Deneen; Pengfei Shi

  • Affiliations:
  • Columbia Univ., New York, NY, USA;-;-;-;-;-

  • Venue:
  • IEEE Transactions on Intelligent Transportation Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

An algorithm for license plate recognition (LPR) applied to the intelligent transportation system is proposed on the basis of a novel shadow removal technique and character recognition algorithms. This paper has two major contributions. One contribution is a new binary method, i.e., the shadow removal method, which is based on the improved Bernsen algorithm combined with the Gaussian filter. Our second contribution is a character recognition algorithm known as support vector machine (SVM) integration. In SVM integration, character features are extracted from the elastic mesh, and the entire address character string is taken as the object of study, as opposed to a single character. This paper also presents improved techniques for image tilt correction and image gray enhancement. Our algorithm is robust to the variance of illumination, view angle, position, size, and color of the license plates when working in a complex environment. The algorithm was tested with 9026 images, such as natural-scene vehicle images using different backgrounds and ambient illumination particularly for low-resolution images. The license plates were properly located and segmented as 97.16% and 98.34%, respectively. The optical character recognition system is the SVM integration with different character features, whose performance for numerals, Kana, and address recognition reached 99.5%, 98.6%, and 97.8%, respectively. Combining the preceding tests, the overall performance of success for the license plate achieves 93.54% when the system is used for LPR in various complex conditions.