Unified inter and intra options learning using policy gradient methods

  • Authors:
  • Kfir Y. Levy;Nahum Shimkin

  • Affiliations:
  • Faculty of Electrical Engineering, Technion, Haifa, Israel;Faculty of Electrical Engineering, Technion, Haifa, Israel

  • Venue:
  • EWRL'11 Proceedings of the 9th European conference on Recent Advances in Reinforcement Learning
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Temporally extended actions (or macro-actions) have proven useful for speeding up planning and learning, adding robustness, and building prior knowledge into AI systems. The options framework, as introduced in Sutton, Precup and Singh (1999), provides a natural way to incorporate macro-actions into reinforcement learning. In the subgoals approach, learning is divided into two phases, first learning each option with a prescribed subgoal, and then learning to compose the learned options together. In this paper we offer a unified framework for concurrent inter- and intra-options learning. To that end, we propose a modular parameterization of intra-option policies together with option termination conditions and the option selection policy (inter options), and show that these three decision components may be viewed as a unified policy over an augmented state-action space, to which standard policy gradient algorithms may be applied. We identify the basis functions that apply to each of these decision components, and show that they possess a useful orthogonality property that allows to compute the natural gradient independently for each component. We further outline the extension of the suggested framework to several levels of options hierarchy, and conclude with a brief illustrative example.