An adaptive mesh algorithm for the numerical solution of electrical models of the heart

  • Authors:
  • Rafael S. Oliveira;Bernardo M. Rocha;Denise Burgarelli;Wagner Meira;Rodrigo W. dos Santos

  • Affiliations:
  • Departamento de Ciência da Computação, Universidade Federal de São João de Rei, Brazil,Departamento de Ciência da Computação, Universidade Federal de Minas ...;Departamento de Ciência da Computação e Programa em Modelagem Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil,Laboratório Nacional de Computaç ...;Departamento de Matemática, Universidade Federal de Minas Gerais, Brazil;Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brazil;Departamento de Ciência da Computação e Programa em Modelagem Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil

  • Venue:
  • ICCSA'12 Proceedings of the 12th international conference on Computational Science and Its Applications - Volume Part I
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Computer models have become valuable tools for the study and comprehension of the complex phenomena of cardiac electrophysiology. However, the high complexity of the biophysical processes translates into complex mathematical and computational models. In this paper we evaluate a numerical algorithm based on mesh adaptivity and finite volume method aiming to accelerate these simulations. This is a very attractive approach since the spreading electrical wavefront corresponds only to a small fraction of the cardiac tissue. Usually, the numerical solution of the partial differential equations that model the phenomenon requires very fine spatial discretization to follow the wavefront, which is approximately 0.2 mm. The use of uniform meshes leads to high computational cost as it requires a large number of mesh points. In this sense, the tests reported in this work show that simulations of two-dimensional models of cardiac tissue have been accelerated by more than 80 times using the adaptive mesh algorithm, with no significant loss in accuracy.