Content-based retrieval for heterogeneous domains: domain adaptation by relative aggregation points

  • Authors:
  • Makoto P. Kato;Hiroaki Ohshima;Katsumi Tanaka

  • Affiliations:
  • Kyoto University, Kyoto, Japan;Kyoto University, Kyoto, Japan;Kyoto University, Kyoto, Japan

  • Venue:
  • SIGIR '12 Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce the problem of domain adaptation for content-based retrieval and propose a domain adaptation method based on relative aggregation points (RAPs). Content-based retrieval including image retrieval and spoken document retrieval enables a user to input examples as a query, and retrieves relevant data based on the similarity to the examples. However, input examples and relevant data can be dissimilar, especially when domains from which the user selects examples and from which the system retrieves data are different. In content-based geographic object retrieval, for example, suppose that a user who lives in Beijing visits Kyoto, Japan, and wants to search for relatively inexpensive restaurants serving popular local dishes by means of a content-based retrieval system. Since such restaurants in Beijing and Kyoto are dissimilar due to the difference in the average cost and areas' popular dishes, it is difficult to find relevant restaurants in Kyoto based on examples selected in Beijing. We propose a solution for this problem by assuming that RAPs in different domains correspond, which may be dissimilar but play the same role. A RAP is defined as the expectation of instances in a domain that are classified into a certain class, e.g. the most expensive restaurant, average restaurant, and restaurant serving the most popular dishes. Our proposed method constructs a new feature space based on RAPs estimated in each domain and bridges the domain difference for improving content-based retrieval in heterogeneous domains. To verify the effectiveness of our proposed method, we evaluated various methods with a test collection developed for content-based geographic object retrieval. Experimental results show that our proposed method achieved significant improvements over baseline methods. Moreover, we observed that the search performance of content-based retrieval in heterogeneous domains was significantly lower than that in homogeneous domains. This finding suggests that relevant data for the same search intent depend on the search context, that is, the location where the user searches and the domain from which the system retrieves data.