Sampling connected induced subgraphs uniformly at random

  • Authors:
  • Xuesong Lu;Stéphane Bressan

  • Affiliations:
  • School of Computing, National University of Singapore, Singapore;School of Computing, National University of Singapore, Singapore

  • Venue:
  • SSDBM'12 Proceedings of the 24th international conference on Scientific and Statistical Database Management
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

A recurrent challenge for modern applications is the processing of large graphs. The ability to generate representative samples of smaller size is useful not only to circumvent scalability issues but also, per se, for statistical analysis and other data mining tasks. For such purposes adequate sampling techniques must be devised. We are interested, in this paper, in the uniform random sampling of a connected subgraph from a graph. We require that the sample contains a prescribed number of vertices. The sampled graph is the corresponding induced graph. We devise, present and discuss several algorithms that leverage three different techniques: Rejection Sampling, Random Walk and Markov Chain Monte Carlo. We empirically evaluate and compare the performance of the algorithms. We show that they are effective and efficient but that there is a trade-off, which depends on the density of the graphs and the sample size. We propose one novel algorithm, which we call Neighbour Reservoir Sampling (NRS), that very successfully realizes the trade-off between effectiveness and efficiency.