Debugging the internet of things: a 6LoWPAN/CoAP testbed infrastructure

  • Authors:
  • Daniel Bimschas;Oliver Kleine;Dennis Pfisterer

  • Affiliations:
  • Institute of Telematics, University of Lübeck, Lübeck, Germany;Institute of Telematics, University of Lübeck, Lübeck, Germany;Institute of Telematics, University of Lübeck, Lübeck, Germany

  • Venue:
  • ADHOC-NOW'12 Proceedings of the 11th international conference on Ad-hoc, Mobile, and Wireless Networks
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper is based on two fundamental assumptions about a future Internet of Things (IoT): i) The amount of wireless, resource-constrained devices will outnumber the amount of devices in the current internet by several orders of magnitude and ii) those devices will be connected to the Internet over multi-hop wireless links. We argue that the experimental validation in testbeds is imperative to make those networks robust. However, there are only limited means to support researchers in "debugging" the actual communication on the wireless medium and often developers can only guess why their protocols don't work in a given environment. In this paper, we present such a framework which extends the WISEBED testbed federation. Our contribution allows an easy-to-use browser-based experimentation and evaluation of wireless multi-hop protocols in all WISEBED-compatible testbeds (nine testbeds with 1000 sensor nodes and the SmartSantander [17] smart city testbed which will offer up to 20,000 IoT devices). Using a generic packet tracking framework for multiple platforms, researchers can easily detect hotspots and bottlenecks in the network and follow the routes of individual packets as they are forwarded. Experiment configurations can be shared on the web so that experiments can easily be repeated to verify published results. We demonstrate the usability of our approach by means of a real-world use-case.