δ-complete decision procedures for satisfiability over the reals

  • Authors:
  • Sicun Gao;Jeremy Avigad;Edmund M. Clarke

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • IJCAR'12 Proceedings of the 6th international joint conference on Automated Reasoning
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce the notion of "δ-complete decision procedures" for solving SMT problems over the real numbers, with the aim of handling a wide range of nonlinear functions including transcendental functions and solutions of Lipschitz-continuous ODEs. Given an SMT problem ϕ and a positive rational number δ, a δ-complete decision procedure determines either that ϕ is unsatisfiable, or that the "δ-weakening" of ϕ is satisfiable. Here, the δ-weakening of ϕ is a variant of ϕ that allows δ-bounded numerical perturbations on ϕ. We establish the existence and complexity of δ-complete decision procedures for bounded SMT over reals with functions mentioned above. We propose to use δ-completeness as an ideal requirement for numerically-driven decision procedures. As a concrete example, we formally analyze the DPLL〈ICP〉 framework, which integrates Interval Constraint Propagation in DPLL(T), and establish necessary and sufficient conditions for its δ-completeness. We discuss practical applications of δ-complete decision procedures for correctness-critical applications including formal verification and theorem proving.