Bayesian geometric modeling of indoor scenes

  • Authors:
  • Bonnie Kermgard

  • Affiliations:
  • University of Arizona

  • Venue:
  • CVPR '12 Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a method for understanding the 3D geometry of indoor environments (e.g. bedrooms, kitchens) while simultaneously identifying objects in the scene (e.g. beds, couches, doors). We focus on how modeling the geometry and location of specific objects is helpful for indoor scene understanding. For example, beds are shorter than they are wide, and are more likely to be in the center of the room than cabinets, which are tall and narrow. We use a generative statistical model that integrates a camera model, an enclosing room “box”, frames (windows, doors, pictures), and objects (beds, tables, couches, cabinets), each with their own prior on size, relative dimensions, and locations. We fit the parameters of this complex, multi-dimensional statistical model using an MCMC sampling approach that combines discrete changes (e.g, adding a bed), and continuous parameter changes (e.g., making the bed larger). We find that introducing object category leads to state-of-the-art performance on room layout estimation, while also enabling recognition based only on geometry.