Globally consistent depth labeling of 4D light fields

  • Authors:
  • Bastian Goldluecke

  • Affiliations:
  • Heidelberg Collaboratory for Image Processing

  • Venue:
  • CVPR '12 Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel paradigm to deal with depth reconstruction from 4D light fields in a variational framework. Taking into account the special structure of light field data, we reformulate the problem of stereo matching to a constrained labeling problem on epipolar plane images, which can be thought of as vertical and horizontal 2D cuts through the field. This alternative formulation allows to estimate accurate depth values even for specular surfaces, while simultaneously taking into account global visibility constraints in order to obtain consistent depth maps for all views. The resulting optimization problems are solved with state-of-the-art convex relaxation techniques. We test our algorithm on a number of synthetic and real-world examples captured with a light field gantry and a plenoptic camera, and compare to ground truth where available. All data sets as well as source code are provided online for additional evaluation.