Weakly supervised object detector learning with model drift detection

  • Authors:
  • Parthipan Siva; Tao Xiang

  • Affiliations:
  • School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS, UK;School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS, UK

  • Venue:
  • ICCV '11 Proceedings of the 2011 International Conference on Computer Vision
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

A conventional approach to learning object detectors uses fully supervised learning techniques which assumes that a training image set with manual annotation of object bounding boxes are provided. The manual annotation of objects in large image sets is tedious and unreliable. Therefore, a weakly supervised learning approach is desirable, where the training set needs only binary labels regarding whether an image contains the target object class. In the weakly supervised approach a detector is used to iteratively annotate the training set and learn the object model. We present a novel weakly supervised learning framework for learning an object detector. Our framework incorporates a new initial annotation model to start the iterative learning of a detector and a model drift detection method that is able to detect and stop the iterative learning when the detector starts to drift away from the objects of interest. We demonstrate the effectiveness of our approach on the challenging PASCAL 2007 dataset.