Articulated part-based model for joint object detection and pose estimation

  • Authors:
  • Min Sun;Silvio Savarese

  • Affiliations:
  • Dept. of Electrical and Computer Engineering, University of Michigan at Ann Arbor, USA;Dept. of Electrical and Computer Engineering, University of Michigan at Ann Arbor, USA

  • Venue:
  • ICCV '11 Proceedings of the 2011 International Conference on Computer Vision
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Despite recent successes, pose estimators are still somewhat fragile, and they frequently rely on a precise knowledge of the location of the object. Unfortunately, articulated objects are also very difficult to detect. Knowledge about the articulated nature of these objects, however, can substantially contribute to the task of finding them in an image. It is somewhat surprising, that these two tasks are usually treated entirely separately. In this paper, we propose an Articulated Part-based Model (APM) for jointly detecting objects and estimating their poses. APM recursively represents an object as a collection of parts at multiple levels of detail, from coarse-to-fine, where parts at every level are connected to a coarser level through a parent-child relationship (Fig. 1(b)-Horizontal). Parts are further grouped into part-types (e.g., left-facing head, long stretching arm, etc) so as to model appearance variations (Fig. 1(b)-Vertical). By having the ability to share appearance models of part types and by decomposing complex poses into parent-child pairwise relationships, APM strikes a good balance between model complexity and model richness. Extensive quantitative and qualitative experiment results on public datasets show that APM outperforms state-of-the-art methods. We also show results on PASCAL 2007 - cats and dogs - two highly challenging articulated object categories.