Performance characteristics of Graph500 on large-scale distributed environment

  • Authors:
  • Toyotaro Suzumura;Koji Ueno;Hitoshi Sato;Katsuki Fujisawa;Satoshi Matsuoka

  • Affiliations:
  • Tokyo Institute of Technology, Japan;Tokyo Institute of Technology, Japan;Tokyo Institute of Technology, Japan;Chuo University, Japan;Tokyo Institute of Technology, Japan

  • Venue:
  • IISWC '11 Proceedings of the 2011 IEEE International Symposium on Workload Characterization
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Graph500 is a new benchmark for supercomputers based on large-scale graph analysis, which is becoming an important form of analysis in many real-world applications. Graph algorithms run well on supercomputers with shared memory. For the Linpack-based supercomputer rankings, TOP500 reports that heterogeneous and distributed-memory super-computers with large numbers of GPGPUs are becoming dominant. However, the performance characteristics of large-scale graph analysis benchmarks such as Graph500 on distributed-memory supercomputers have so far received little study. This is the first report of a performance evaluation and analysis for Graph500 on a commodity-processor-based distributed-memory supercomputer. We found that the reference implementation "replicated-csr" based on distributed level-synchronized breadth-first search solves a large free graph problem with 2