Projection-Based PILP: computational learning theory with empirical results

  • Authors:
  • Hiroaki Watanabe;Stephen H. Muggleton

  • Affiliations:
  • Imperial College London, London, UK;Imperial College London, London, UK

  • Venue:
  • ILP'11 Proceedings of the 21st international conference on Inductive Logic Programming
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Evaluations of advantages of Probabilistic Inductive Logic Programming (PILP) against ILP have not been conducted from a computational learning theory point of view. We propose a PILP framework, projection-based PILP, in which surjective projection functions are used to produce a "lossy" compression dataset from an ILP dataset. We present sample complexity results including conditions when projection-based PILP needs fewer examples than PAC. We experimentally confirm the theoretical bounds for the projection-based PILP in the Blackjack domain using Cellist, a system which machine learns Probabilistic Logic Automata. In our experiments projection-based PILP shows lower predictive error than the theoretical bounds and achieves substantially lower predictive error than ILP. To the authors' knowledge this is the first paper describing both a computer learning theory and related empirical results on an advantage of PILP against ILP.