A queueing theoretic approach to decoupling inventory

  • Authors:
  • Eline De Cuypere;Koen De Turck;Dieter Fiems

  • Affiliations:
  • Department of Telecommunications and Information Processing, Ghent University, Belgium;Department of Telecommunications and Information Processing, Ghent University, Belgium;Department of Telecommunications and Information Processing, Ghent University, Belgium

  • Venue:
  • ASMTA'12 Proceedings of the 19th international conference on Analytical and Stochastic Modeling Techniques and Applications
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates the performance of different hybrid push-pull systems with a decoupling inventory at the semi-finished products and reordering thresholds. Raw materials are ‘pushed' into the semi-finished product inventory and customers ‘pull' products by placing orders. Furthermore, production of semi-finished products starts when the inventory goes below a certain level, referred to as the threshold value and stops when the inventory attains stock capacity. As performance of the decoupling stock is critical to the overall cost and performance of manufacturing systems, this paper introduces a Markovian model for hybrid push-pull systems. In particular, we focus on a queueing model with two buffers, thereby accounting for both the decoupling stock as well as for possible backlog of orders. By means of numerical examples, we assess the impact of different reordering policies, irregular order arrivals, the set-up time distribution and the order processing time distribution on the performance of hybrid push-pull systems.