Constraint force design method for topology optimization of planar rigid-body mechanisms

  • Authors:
  • Gil Ho Yoon;Jae Chung Heo

  • Affiliations:
  • -;-

  • Venue:
  • Computer-Aided Design
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This study develops a new design method called the constraint force design method, which allows topology optimization for planar rigid-body mechanisms. In conventional mechanism synthesis methods, the kinematics of a mechanism are analytically derived and the positions and types of joints of a fixed configuration (hereafter the topology) are optimized to obtain an optimal rigid-body mechanism tracking the intended output trajectory. Therefore, in conventional methods, modification of the configuration or topology of joints and links is normally considered impossible. In order to circumvent the fixed topology limitation in optimally designing rigid-body mechanisms, we present the constraint force design method. This method distributes unit masses simulating revolute or prismatic joints depending on the number of assigned degrees of freedom, analyzes the kinetics of unit masses coupled with constraint forces, and designs the existence of these constraint forces to minimize the root-mean-square error of the output paths of synthesized linkages and a target linkage using a genetic algorithm. The applicability and limitations of the newly developed method are discussed in the context of its application to several rigid-body synthesis problems.