Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains

  • Authors:
  • Patrick Erbts;Alexander DüSter

  • Affiliations:
  • -;-

  • Venue:
  • Computers & Mathematics with Applications
  • Year:
  • 2012

Quantified Score

Hi-index 0.09

Visualization

Abstract

This paper introduces a fully implicit partitioned coupling scheme for problems of thermoelasticity at finite strains utilizing the p-version of the finite element method. The mechanical and the thermal fields are partitioned into symmetric subproblems where algorithmic decoupling has been obtained by means of an isothermal operator-split. Numerical relaxation methods have been implemented to accelerate the convergence of the algorithm. Such methods are well-known from coupled fluid-structure interaction problems leading to highly efficient algorithms. Having studied the influence of three different strategies: polynomial prediction methods, numerical relaxation with constant relaxation coefficients, its dynamic variant with a residual based relaxation coefficient and a variant of a reduced order model - quasi-Newton method, we present several numerical simulations of quasi-static problems investigating the performance of accelerated coupling schemes.