Efficient isosurface tracking using precomputed correspondence table

  • Authors:
  • Guangfeng Ji;Han-Wei Shen

  • Affiliations:
  • Department of Computer and Information Science, The Ohio State University, Columbus, Ohio;Department of Computer and Information Science, The Ohio State University, Columbus, Ohio

  • Venue:
  • VISSYM'04 Proceedings of the Sixth Joint Eurographics - IEEE TCVG conference on Visualization
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Feature tracking is a useful method for visualizing and analyzing time-varying scalar fields. It allows scientists to focus on regions of interest and track their evolution and interaction over time. To allow the user to freely explore the data set, features must be tracked in an efficient manner. In this paper, we present an efficient time-varying isosurface tracking algorithm. Unlike the previous algorithms which compute the corresponding isosurface components in the adjacent time steps by performing expensive computation at run time, our algorithm can rapidly identify corresponding isosurfaces by performing simple table lookup operations. This table, called the correspondence lookup table, can be computed at a preprocessing stage. The idea behind our approach is that the correspondence relationship can only change at critical isovalues in R3 or R4 and remains unchanged between adjacent pairs of critical isovalues. With our algorithm, isosurfaces can be tracked in an efficient manner with minimal overhead.