3D soft segmentation and visualization of medical data based on nonlinear diffusion and distance functions

  • Authors:
  • B. Petersch;O. Serrano-Serrano;D. Hönigmann

  • Affiliations:
  • Advanced Computer Vision GmbH, Vienna, Austria;Advanced Computer Vision GmbH, Vienna, Austria;Advanced Computer Vision GmbH, Vienna, Austria

  • Venue:
  • EUROVIS'06 Proceedings of the Eighth Joint Eurographics / IEEE VGTC conference on Visualization
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Visualization of medical 3D data is a complex problem, since the raw data is often unsuitable for standard techniques like Direct Volume Rendering. Some kind of pre-treatment is necessary, usually segmentation of the structures of interest, which in turn is a difficult task. Most segmentation techniques yield a model without indicating any uncertainty. Visualization then can be misleading, especially if the original data is of poor contrast. We address this dilemma proposing a geometric approach based on distance on image manifolds and an alternative approach based on nonlinear diffusion. An effective algorithm solving Hamilton-Jacobi equations allows for computing a distance function for 2D and 3D manifolds at interactive rates. An efficient implementation of a semi-implicit operator splitting scheme accomplishes interactivity for the diffusion-based strategy. We establish a model which incorporates local information about its reliability and can be visualized with standard techniques. When interpreting the result of the segmentation in a diagnostic setting, this information is of utmost importance.