Performance analysis of HPC applications in the cloud

  • Authors:
  • Roberto R. ExpóSito;Guillermo L. Taboada;Sabela Ramos;Juan TouriñO;RamóN Doallo

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • Future Generation Computer Systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The scalability of High Performance Computing (HPC) applications depends heavily on the efficient support of network communications in virtualized environments. However, Infrastructure as a Service (IaaS) providers are more focused on deploying systems with higher computational power interconnected via high-speed networks rather than improving the scalability of the communication middleware. This paper analyzes the main performance bottlenecks in HPC application scalability on the Amazon EC2 Cluster Compute platform: (1) evaluating the communication performance on shared memory and a virtualized 10 Gigabit Ethernet network; (2) assessing the scalability of representative HPC codes, the NAS Parallel Benchmarks, using an important number of cores, up to 512; (3) analyzing the new cluster instances (CC2), both in terms of single instance performance, scalability and cost-efficiency of its use; (4) suggesting techniques for reducing the impact of the virtualization overhead in the scalability of communication-intensive HPC codes, such as the direct access of the Virtual Machine to the network and reducing the number of processes per instance; and (5) proposing the combination of message-passing with multithreading as the most scalable and cost-effective option for running HPC applications on the Amazon EC2 Cluster Compute platform.