On the set multicover problem in geometric settings

  • Authors:
  • Chandra Chekuri;Kenneth L. Clarkson;Sariel Har-Peled

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL;IBM Almaden, San Jose, CA;University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • ACM Transactions on Algorithms (TALG)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the set multicover problem in geometric settings. Given a set of points P and a collection of geometric shapes (or sets) F, we wish to find a minimum cardinality subset of F such that each point p ∈ P is covered by (contained in) at least d(p) sets. Here, d(p) is an integer demand (requirement) for p. When the demands d(p) = 1 for all p, this is the standard set cover problem. The set cover problem in geometric settings admits an approximation ratio that is better than that for the general version. In this article, we show that similar improvements can be obtained for the multicover problem as well. In particular, we obtain an O(log opt) approximation for set systems of bounded VC-dimension, and an O(1) approximation for covering points by half-spaces in three dimensions and for some other classes of shapes.