Computation of joint timing yield of sequential networks considering process variations

  • Authors:
  • Amit Goel;Sarvesh Bhardwaj;Praveen Ghanta;Sarma Vrudhula

  • Affiliations:
  • Department of Electrical Engineering, Arizona State University, Tempe, AZ;Department of Electrical Engineering, Arizona State University, Tempe, AZ;Department of Electrical Engineering, Arizona State University, Tempe, AZ;Consortium for Embedded Systems, Department of Computer Science and Engineering, Arizona State University, Tempe, AZ

  • Venue:
  • PATMOS'07 Proceedings of the 17th international conference on Integrated Circuit and System Design: power and timing modeling, optimization and simulation
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a framework for estimating the timing yield of sequential networks in the presence of process variations. We present an accurate method for characterizing various parameters such as setup time, hold time, clock to output delay etc. of sequential elements in the network. Using these models and the models of interconnects gate delays, and clock skews, we perform statistical timing analysis of combinational blocks in the circuit. The result of the timing analysis is a set of constraints involving random process variables that the network has to satisfy together in order to work correctly. We compute the joint yield of all the constraints to estimate the yield of the entire network. The proposed method provides a speedup of up to 400× compared to 10000 Monte Carlo simulations with an average error of less than 1% and 5% in mean and standard deviation respectively.