Coarse-grained parallelization of cellular-automata simulation algorithms

  • Authors:
  • Olga Bandman

  • Affiliations:
  • Supercomputer Software Department, ICM&MG, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

  • Venue:
  • PaCT'07 Proceedings of the 9th international conference on Parallel Computing Technologies
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Simulating spatial dynamics in physics by Cellular Automata (CA) requires very large computation power, and, hence, CA simulation algorithms are to be implemented on multiprocessors. The preconceived opinion, that no much effort is required to obtain highly efficient coarse grained parallel CA algorithm, is not always true. In fact, a great variety of CA modifications coming into practical use need appropriate, sometimes sophisticated, methods of CA algorithms parallel implementation. Proceeding from the above a general approach to CA parallelization, based on domain decomposition correctness conditions, is formulated. Starting from the correctness conditions particular parallelization methods are developed for the main classes of CA simulation models: synchronous CA with multi-cell updating rules, asynchronous probabilistic CA, and CA compositions. Examples and experimental results are given for each case.