Graph bootstrap percolation

  • Authors:
  • József Balogh;Béla Bollobás;Robert Morris

  • Affiliations:
  • Department of Mathematics, University of Illinois,Urbana, Illinois 61801 and Department of Mathematics,University of California, San Diego, La Jolla, California 92093;Trinity College, Cambridge CB2 1TQ, England and Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152;IMPA, Estrada Dona Castorina 110, Jardim Botánico, Rio de Janeiro, Brasil

  • Venue:
  • Random Structures & Algorithms
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Graph bootstrap percolation is a deterministic cellular automaton which was introduced by Bollobás in 1968, and is defined as follows. Given a graph H, and a set \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}G \subset E(K_n)\end{align*} \end{document} **image** of initially ‘infected’ edges, we infect, at each time step, a new edge e if there is a copy of H in \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}K_n\end{align*} \end{document} **image** such that e is the only not-yet infected edge of H. We say that G percolates in the H-bootstrap process if eventually every edge of \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}K_n\end{align*} \end{document} **image** is infected. The extremal questions for this model, when H is the complete graph \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}K_r\end{align*} \end{document} **image** , were solved (independently) by Alon, Kalai and Frankl almost thirty years ago. In this paper we study the random questions, and determine the critical probability \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}p_c(n,K_r)\end{align*} \end{document} **image** for the \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}K_r\end{align*} \end{document} **image** -process up to a poly-logarithmic factor. In the case \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}r = 4\end{align*} \end{document} **image** we prove a stronger result, and determine the threshold for \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}p_c(n,K_4)\end{align*} \end{document} **image** . © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012 (Supported by CNPq bolsa de Produtividade em Pesquisa.)