Continuous capacities on continuous state spaces

  • Authors:
  • Jean Goubault-Larrecq

  • Affiliations:
  • LSV, ENS Cachan, CNRS, INRIA Futurs, Cachan

  • Venue:
  • ICALP'07 Proceedings of the 34th international conference on Automata, Languages and Programming
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose axiomatizing some stochastic games, in a continuous state space setting, using continuous belief functions, resp. plausibilities, instead of measures. Then, stochastic games are just variations on continuous Markov chains. We argue that drawing at random along a belief function is the same as letting the probabilistic player P play first, then letting the non-deterministic player C play demonically. The same holds for an angelic C, using plausibilities instead. We then define a simple modal logic, and characterize simulation in terms of formulae of this logic. Finally, we show that (discounted) payoffs are defined and unique, where in the demonic case, P maximizes payoff, while C minimizes it.