Floating ground architecture: overcoming the one-hop boundary of current mobile internet

  • Authors:
  • Hajime Tazaki;Rodney Van Meter;Ryuji Wakikawa;Noriyuki Shigechika;Keisuke Uehara;Jun Murai

  • Affiliations:
  • NICT, Tokyo, Japan;Keio University, Fujisawa, Japan;TOYOTA InfoTechnology Center, U.S.A., Inc., Mountain View, CA, USA;RCA Co., Ltd., Tokyo, Japan;Keio University, Fujisawa, Japan;Keio University, Fujisawa, Japan

  • Venue:
  • Proceedings of the eighth ACM/IEEE symposium on Architectures for networking and communications systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose the Floating Ground Architecture (FGA) for network mobility and ad hoc network convergence. Various factors, including excessive dependence on intelligence in the fixed network, result in the Internet having a de facto logical boundary one hop from the fixed network. To reduce these dependencies, FGA introduces a new logical layer, called Floating Ground, between the fixed network infrastructure and the mobile network, aiming to bridge these different types of network systems. Thanks to the effect of this buffer layer, the architecture: 1) optimizes routes in a deeply nested mobile router arrangement, 2) simplifies mobility event handling under frequent movement of the nodes, and 3) transparently introduces additional functionality with no additional intelligence on the infrastructure side. Through evaluation of our proposed architecture using an actual software implementation running via Direct Code Execution simulation, optimized routes are confirmed with three possible mobility scenarios, demonstrating the handoff duration is dramatically reduced in the short-distance movement scenario, which happens in 78.4%, at maximum, of the handoff events under actual taxi cabs movement in real world. Qualitative analysis of FGA shows it minimizes modification of the network components and existing standardized protocols, and is therefore more suitable for self-organized, distributed network extension than competitive approaches.