Towards an effective and unbiased ranking of scientific literature through mutual reinforcement

  • Authors:
  • Xiaorui Jiang;Xiaoping Sun;Hai Zhuge

  • Affiliations:
  • Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

  • Venue:
  • Proceedings of the 21st ACM international conference on Information and knowledge management
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

It is important to help researchers find valuable scientific papers from a large literature collection containing information of authors, papers and venues. Graph-based algorithms have been proposed to rank papers based on networks formed by citation and co-author relationships. This paper proposes a new graph-based ranking framework MutualRank that integrates mutual reinforcement relationships among networks of papers, researchers and venues to achieve a more synthetic, accurate and fair ranking result than previous graph-based methods. MutualRank leverages the network structure information among papers, authors, and their venues available from a literature collection dataset and sets up a unified mutual reinforcement model that involves both intra- and inter-network information for ranking papers, authors and venues simultaneously. To evaluate, we collect a set of recommended papers from websites of graduate-level computational linguistics courses of 15 top universities as the benchmark and apply different methods to estimate paper importance. The results show that MutualRank greatly outperforms the competitors including Pag-eRank, HITS and CoRank in ranking papers as well as researchers. The experimental results also demonstrate that venues ranked by MutualRank are reasonable.