Finding top k most influential spatial facilities over uncertain objects

  • Authors:
  • Liming Zhan;Ying Zhang;Wenjie Zhang;Xuemin Lin

  • Affiliations:
  • The University of New South Wales, Sydney, Australia;The University of New South Wales, Sydney, Australia;The University of New South Wales, Sydney, Australia;The University of New South Wales, Sydney, Australia

  • Venue:
  • Proceedings of the 21st ACM international conference on Information and knowledge management
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Uncertainty is inherent in many important applications, such as location-based services (LBS), sensor monitoring and radio-frequency identification (RFID). Recently, considerable research efforts have been put into the field of uncertainty-aware spatial query processing. In this paper, we study the problem of finding top k most influential facilities over a set of uncertain objects, which is an important spatial query in the above applications. Based on the maximal utility principle, we propose a new ranking model to identify the top k most influential facilities, which carefully captures influence of facilities on the uncertain objects. By utilizing two uncertain object indexing techniques, R-tree and U-Quadtree, effective and efficient algorithms are proposed following the filtering and verification paradigm, which significantly improves the performance of the algorithms in terms of CPU and I/O costs. Comprehensive experiments on real datasets demonstrate the effectiveness and efficiency of our techniques.