Fast and effective lossy compression algorithms for scientific datasets

  • Authors:
  • Jeremy Iverson;Chandrika Kamath;George Karypis

  • Affiliations:
  • University of Minnesota, Minneapolis, MN;Lawrence Livermore National Laboratory, Livermore, CA;University of Minnesota, Minneapolis, MN

  • Venue:
  • Euro-Par'12 Proceedings of the 18th international conference on Parallel Processing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper focuses on developing effective and efficient algorithms for compressing scientific simulation data computed on structured and unstructured grids. A paradigm for lossy compression of this data is proposed in which the data computed on the grid is modeled as a graph, which gets decomposed into sets of vertices which satisfy a user defined error constraint ε. Each set of vertices is replaced by a constant value with reconstruction error bounded by ε. A comprehensive set of experiments is conducted by comparing these algorithms and other state-of-the-art scientific data compression methods. Over our benchmark suite, our methods obtained compression of 1% of the original size with average PSNR of 43.00 and 3% of the original size with average PSNR of 63.30. In addition, our schemes outperform other state-of-the-art lossy compression approaches and require on the average 25% of the space required by them for similar or better PSNR levels.